A Decision Tree Algorithm Pertaining to the Student Performance Analysis and Prediction
نویسندگان
چکیده
Growth of an educational institute can be measured in terms of successful students of the institute. The analysis related to the prediction of students academic performance in higher education seems an essential requirement for the improvement in quality education. Data mining techniques play an important role in data analysis. For the construction of a classification model which could predict performance of students, particularly for engineering branches, a decision tree algorithm associated with the data mining techniques have been used in the research. A number of factors may affect the performance of students. Here some significant factors have been considered while constructing the decision tree for classifying students according to their attributes (grades). In this paper four different decision tree algorithms J48, NBtree, Reptree and Simple cart were compared and J48 decision tree algorithm is found to be the best suitable algorithm for model construction. Cross validation method and percentage split method were used to evaluate the efficiency of the different algorithms. The traditional KDD process has been used as a methodology. The WEKA (Waikato Environment for Knowledge Analysis) tool was used for analysis and prediction. . Results obtained in the present study may be helpful for identifying the weak students so that management could take appropriate actions, and success rate of students could be increased sufficiently.
منابع مشابه
Steel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm
Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملEvaluation of liquefaction potential based on CPT results using C4.5 decision tree
The prediction of liquefaction potential of soil due to an earthquake is an essential task in Civil Engineering. The decision tree is a tree structure consisting of internal and terminal nodes which process the data to ultimately yield a classification. C4.5 is a known algorithm widely used to design decision trees. In this algorithm, a pruning process is carried out to solve the problem of the...
متن کاملEarly Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013